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The scan-line corrector (SLC) of the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) sensor failed in 2003,
resulting in about 22% of the pixels per scene not being scanned. The SLC failure has seriously limited the
scientific applications of ETM+ data. While there have been a number of methods developed to fill in the data
gaps, each method has shortcomings, especially for heterogeneous landscapes. Based on the assumption that
the same-class neighboring pixels around the un-scanned pixels have similar spectral characteristics, and that
these neighboring and un-scanned pixels exhibit similar patterns of spectral differences between dates, we
developed a simple and effective method to interpolate the values of the pixels within the gaps. We refer to
this method as the Neighborhood Similar Pixel Interpolator (NSPI). Simulated and actual SLC-off ETM+
images were used to assess the performance of the NSPI. Results indicate that NSPI can restore the value of
un-scanned pixels very accurately, and that it works especially well in heterogeneous regions. In addition, it
can work well even if there is a relatively long time interval or significant spectral changes between the input
and target image. The filled images appear reasonably spatially continuous without obvious striping patterns.
Supervised classification using the maximum likelihood algorithm was done on both gap-filled simulated
SLC-off data and the original “gap free” data set, and it was found that classification results, including
accuracies, were very comparable. This indicates that gap-filled products generated by NSPI will have
relevance to the user community for various land cover applications. In addition, the simple principle and high
computational efficiency of NSPI will enable processing large volumes of SLC-off ETM+ data.
Inc.
Published by Elsevier Inc.
1. Introduction

The Landsat series of satellites provides an unparalleled data
source for land surface mapping and monitoring (Byrne et al., 1980;
Cohen & Goward, 2004; Hansen et al., 2008; Healey et al., 2005;Masek
et al., 2008; Vogelmann et al., 2001). The Landsat sensors include the
Landsat 5 Thematic Mapper (TM), the Landsat 7 Enhanced Thematic
Mapper Plus (ETM+), and the Landsat 1–5 Multispectral Scanners
(MSS). The high value of the data from Landsat can be attributed in
part to long-term repeat coverage (1972–present) and relatively high
spatial resolution (30 m for the TM and the ETM+, and 80 m for the
MSS sensors). Both Landsat 5 and Landsat 7 are still functioning,
although both have substantially exceeded their planned design lives.

On May 31, 2003, the scan-line corrector (SLC) for the ETM+
sensor on board Landsat 7 failed permanently. The SLC compensates
for the forward motion of the satellite, and without an operating SLC,
images have wedge-shaped gaps that range from a single pixel in
width near the image-nadir, to about 12 pixels towards the edges of
the scene. Missing pixels comprise about 22% pixels of these images
(Arvidson et al., 2006; Ju & Roy, 2008). The deteriorated image quality
resulting from SLC failure has become a major obstacle for Landsat
ETM+ data applications. Accordingly, images acquired before the SLC
failure are designated SLC-on images, while those acquired after the
SLC failure are designated SLC-off images.

Soon after SLC failure, a joint United States Geological Survey/
National Aeronautics and Space Administration (USGS/NASA) Landsat
team explored a number of different options for filling in the data gaps
in the SLC-off images. One method developed was a local linear
histogram-matching method using one or more SLC-off or SLC-on
images (USGS, 2004). This method applies a local linear histogram
matching in a moving window of each missing pixel to derive the re-
scaling function. This re-scaling function is then used to convert the
radiometric values of one input scene into equivalent radiometric
values of the scene being gap-filled, and the transformed data are then
used to fill the gaps of that scene. This method is very simple and easy
to implement, and can resolve many of the missing-data problems if
the input scenes are of high quality (e.g., negligible cloud and snow
cover) and represent comparable seasonal conditions (USGS, 2004).
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As an alternative to this method, Roy et al. (2008) proposed to use the
information observed by MODIS to estimate reflectance of the un-
scanned pixels. Maxwell et al. (2007) developed another approach,
wherebymulti-scale segmentation was used to fill gaps in the Landsat
7 ETM+ SLC-off images. This approach was applied to three different
areas, demonstrating that the filled products were useful for a wide
variety of applications, such as general land cover mapping and visual
assessment (Bédard et al., 2008). Geostatistics based methods have
also been employed (Zhang, et al., 2007; Pringle, et al., 2009), in which
kriging or co-kriging techniques have been used to fill the data gaps.
The case studies showed that these geostatistical methods can also be
very effective for interpolating the missing pixels in the SLC-off
imagery.

While the above methods can restore the un-scanned gaps in
ETM+ SLC-off imagery, sometimes with very good results, it should
be noted that the above methods also suffer from a number of
limitations that have precluded their widespread use, especially for
quantitative application. For instance, the local linear histogram-
matching method can yield satisfactory results in homogenous
regions such as forests, but it tends to have difficulty with
heterogeneous landscapes where the size of surface objects are
smaller than the local moving window size (USGS, 2004). In general,
using information from non-Landsat sensors is constrained by
spectral compatibility and spatial resolution issues. Few instruments
with high spatial resolution are spectrally similar to ETM+; one
sensor that has comparable spectral bands is MODIS, but this sensor
has much coarser spatial resolution (Roy et al., 2008). The multi-scale
segmentation approach has a disadvantage in having lower reflec-
tance prediction accuracy at the pixel level, especially for narrow or
small objects, such as roads and streams (Maxwell et al., 2007). The
geostatistical interpolation methods also have two major drawbacks.
First, these methods do not predict the reflectance well at the
pixel-level, and thus are not optimal for small and discrete objects.
Secondly, these geostatistical approaches are very computationally
intensive, which limit their implementation for mass production
(Zhang, et al., 2007; Pringle, et al., 2009).

Based on the shortcomings in the above methods, the aim of this
study is to demonstrate the application of a simple and effective
method to fill the gaps in SLC-off ETM+ imagery. This new method,
which we will refer to hereafter as the Neighborhood Similar Pixel
Interpolator (NSPI), has the potential to interpolate the value of pixels
located in the gaps accurately, especially improving results in
heterogeneous landscape areas. In this paper, we will first describe
this approach and the algorithm, and later on we will demonstrate its
use and performance on simulated and actual SLC-off images.

2. Algorithm development

It is reasonable to assume that neighboring pixels in close
proximity to SLC-off gaps share similar spectral characteristics and
temporal patterns of changes with the missing pixels located within
the gaps, if they belong to the same land cover type. Thus it is logical to
make use of the information of the same-class neighboring pixels to
restore spectral reflectance of missing pixels. Here, for convenience in
this paper, the SLC-off image that will be filled is defined as the target
image, while the other images that are selected to fill the gaps in the
target image are referred as the input images. There are two data
sources that can be used to fill the gaps in target image: (1) an
appropriate TM image or SLC-on ETM+ image, and (2) SLC-off images
acquired at different dates, whereby the scanned parts of these images
partly overlap with the gaps in the target image. The steps for gap
filling implementation for these two data sources will be introduced
respectively below. Since the local atmospheric conditions are usually
relatively homogenous, pixels within a given neighborhood will
normally be under similar atmospheric effects. The NSPI can be
applied either (1) to top-of-atmosphere radiance or DN value (if the
radiometric calibration formula is the same between input and target
images), or (2) to top-of-atmosphere reflectance or reflectance
products after the atmospheric correction.

2.1. Using a single TM or SLC-on ETM+ image

A TM image acquired reasonably close to the date of the target
image can be used as the input image. Target images that are the most
similar to the input images in seasonality and acquired under
comparable sun illumination conditions are the best scenes to use.
Similarly, an SLC-on ETM+ image can also be used, assuming that
there has not been a significant amount of land use and land cover
change between data acquisition times. Before implementing the
filling process, the input image must be geometrically rectified to
match the target image. Fig. 1 presents a flowchart of the gap filling
method using a single input image. All steps will be discussed in detail
below.

2.1.1. Selection of neighboring similar pixels
Based on the assumption that the same land cover class pixels in

close proximity to the gaps have similar spectral characteristics and
temporal patterns of change with the target missing pixel, it is
necessary to search for similar pixels near the gaps. We assume that
no major land cover changes occurred during the period between
acquisitions of the input image and target image. Assuming that the
time interval between input and target scene acquisitions is short, we
think that this assumption will generally be valid. Accordingly, we can
select the similar pixels from the input image and assume that these
pixels are also spectrally similar with the target missing pixel at the
target image. Here, an adaptive moving window searching procedure
is employed. As shown in Fig. 2, all common pixels that are located in
the moving window but outside the gaps with valid values both in
target and input images are selected.When using TM or SLC-on ETM+
images as input images, the gaps only exist in the target image within
thewindow (black part in Fig. 2). Similar pixels are then selected from
these common pixels according to spectral similarity. Here the
spectral similarity is defined as root mean square deviation (RMSD)
between each common pixel and the target pixel as Eq. (1). The target
pixel is a pixel located in the gaps of the target image without a valid
value.

RMSDi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

b=1
L xi; yi; t1; bð Þ−L x; y; t1; bð Þð Þ2

n

vuuut
ð1Þ

L(xi, yi, t1, b) is the value of ith common pixel located in (xi, yi,) in
band b for the input image acquired at t1, L(x, y, t1, b) is with same
definition but for a target pixel, and n is the number of spectral bands.
A large RMSD denotes a large spectral difference. Then, a threshold is
used to identify similar pixels that have an RMSD values lower than
the threshold. The threshold can be determined by the standard
deviation of a population of pixels from the input image and the
estimated number of land cover classes (Gao et al., 2006). If RMSD of
the ith common pixel satisfies Eq. (2), the ith common pixel is selected
as a similar pixel:

RMSDi ≤ ∑
n

b=1
σ bð Þ × 2 =m

� �
= n ð2Þ

where σ(b) is the standard deviation of the whole input image for
band b, and m is the number of classes. The estimated number of
classes (m) needs to be predefined. This value is an empirical
threshold and varies with the complexity of the landscape. It can be
estimated by visual interpretation of the input images, or using a prior
land covermap. In this experimentwe used the value of five form. Use
of a larger number of classes represents a stricter condition for
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Fig. 1. The flowchart of the NSPI using a single input image.
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selection of similar pixels from the input images. Considering that
artifacts such as random noise, and atmospheric haze and small
clouds might cause some uncertainty for prediction if the number of
selected similar pixels is too small, the sample size of selected similar
pixels must meet a minimum requirement. Here, we defined the
minimum number of similar pixels as M. This value also needs to be
predefined. For the test area, we empirically determined that a value
of 20 was appropriate (discussed in further detail below). The initial
moving window size (IWS) can then be calculated from the minimum
sample size M from the following equation:

IWS =
ffiffiffiffiffi
M

p
+ 1

� �
=2

h i�
2 + 1 ð3Þ

The center of themovingwindow is the target pixel located at (x, y),
and [*] is the integer part of

ffiffiffiffiffi
M

p
+ 1

� �
= 2. Beginning with this initial
Fig. 2. Schematic diagram of the similar pixels selection when using a single input
image.
window, the number of selected similar pixels (N) is counted. If the
number of similar pixels cannot meet the required sample size of
selected similar pixels M, the window is expanded by two pixels (i.e.,
5×5 to 7×7…) to search similar pixels in a larger area. The searching
procedure iterates many times until the minimum number of similar
pixelsM is met. Because large window sizes will take much computing
time, we set a maximum window size with the size of 17×17. If the
minimum number of similar pixels (M) is not met before window size
reaches the maximumwindow size, all selected similar pixels are used,
regardless of the total number of similar pixels. For the special situation
when there is no similarpixel selectedwhen themaximumwindowsize
has been reached, then all of the common pixels will be used to predict
the value of target pixel.

2.1.2. Calculation of the weights for similar pixels
The information of all the similar pixels can be used to predict the

value of the target pixel. However, the contribution of the similar
pixels might vary because some similar pixels are likely to be more
spectrally comparable to the target pixel than others. The weight Wj

determines the contribution of jth similar pixel for predicting the
value of the target pixel. This is determined by the location of the
similar pixel and the spectral similarity between the similar pixel and
target pixel (Gao et al., 2006). Higher spectral similarity and smaller
distance of a similar pixel to the target pixel will increase the weight
of that given pixel. In Eq. (4), the geographic distance Dj between the
jth similar pixel (xj, yj) and the target pixel (x, y) is calculated:

Dj =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xj−x

� �2
+ yj−y

� �2
r

ð4Þ

The spectral similarity is determined by the RMSD between each
similar pixel and the target pixel as in Eq. (2) above. Combining
spectral similarity and geographic distance, a synthetic index CD can
be computed as:

CDj = RMSDj × Dj ð5Þ



Table 1
Data quality flag for using a single input image.

Value Meaning

0 This pixel is not in gaps
1 Predicted by similar pixels more than M
2 Predicted by similar pixels less than M
3 Predicted by local linear histogrammethod (no similar pixel were selected)
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As described above, a similar pixel with a larger CD value
contributes less to the computed value for the target pixel, so we
used the normalized reciprocal of CD as the weight Wj:

Wj = 1 = CDj

� �
= ∑

N

j=1
1 = CDj

� �
ð6Þ

The range of Wj is from 0 to 1, and the sum of all similar pixel
weights is 1. For the special situation when p similar pixels hold the
exact same spectral characteristics as the target pixel (i.e. RMSD=0),
we set W for these special similar pixels as 1/p, that is, all the
information is given by these special similar pixels.

2.1.3. Calculation of the target pixel value
There are two methods to predict the radiometric value of the

target pixel using the information provided by similar pixels. First,
since the similar pixels have the same or approximate spectral value
with the target pixel when they are observed at the same time, we can
use the information of these similar pixels in the target image to
predict the target pixel. In addition, the reliability of information
provided by each similar pixel might be different. The larger weightW
the similar pixel holds, the more reliable it is. Accordingly, the
weighted average of all the similar pixels in the target image is used to
make the first prediction for the target pixel:

L1 x; y; t2; bð Þ = ∑
N

j=1
Wj × L xj; yj; t2; b

� �
ð7Þ

Secondly, for the target pixel, the radiance value at t2 equals the
sum of radiance value at t1 and the radiance change from t1 to t2. For
the reflectance product, this change can be caused by land surface
variations, such as changes in phenology of vegetation and soil
moisture. For the radiance (or DN) or top-of-atmosphere (TOA)
reflectance products, this change also includes the atmospheric status
variation besides the land surface state changes. Because the value at
t1 can be obtained directly from the input image, we only need to
estimate the change of the target pixel from t1 to t2. It is reasonable to
assume that the change of similar pixels can represent the change of
the target pixel, because the similar pixels have the same land cover
type as the target pixel and are close to the target pixel in geographic
space. Accordingly, the weighted average of the change provided by
all of the similar pixels is used to calculate the value of the target pixel
as the second prediction:

L2 x; y; t2; bð Þ = L x; y; t1; bð Þ + ∑
N

j=1
Wj × L xj; yj; t2; b

� �
−L xj; yj; t1; b

� �� �
ð8Þ

It should be noted that the spectral properties of Landsats TM and
ETM+ are not identical (Teillet et al., 2001). Using a TM image as the
input image might confer a small amount of error in the prediction. To
alleviate the error, the L(xi, yi, t1, b) of the TM images can be normalized
to the value of the ETM images before implementing the filling process.

The accuracy of prediction of Eqs. (7) and (8)might be different for
different areas. For homogenous areas, the first prediction L1(x, y, t2, b)
might be more reliable than the second prediction L2(x, y, t2, b)
because the target pixel and all the similar pixels probably belong to
the same object and should hold the approximate radiometric value.
For heterogeneous areas, the second prediction might be more
trustworthy because the target pixel and all the similar pixels
probably belong to different objects. Thus, the radiometric value
provided by the same location pixel in the input image will likely be
more similar to the target pixel after accounting for the changes
between the acquired dates of the target image and the input image.
In addition, the first prediction comes from the target image and thus
is more radiometrically consistent. The second prediction takes into
account the same location from input image and thus is more spatially
consistent. Accordingly, a more accurate prediction can be obtained
by a weighted combination of these two predicted results with
consideration given to both landscape homogeneity and the extent of
change. Here, we use the averaged RMSD (R1) between the similar
pixel and the target pixel to denote the extent of the landscape
homogeneity:

R1 =
1
N

∑
N

j=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

b=1
L xj; yj; t1; b
� �

−L
�
x; y; t1; b

� ��2
� �

= n

s
ð9Þ

In the sameway, the averaged RMSD (R2) of similar pixels between
observations at t1 and t2 is used to denote the extent of change
between the input image and the target image:

R2 =
1
N

∑
N

j=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

b=1
L xj; yj; t1; b
� �

−L xj; yj; t2; b
� �� �2

� �
= n

s
ð10Þ

Then, according to above discussion, we use the normalized
reciprocal of R1 and R2 as the weight T1 and T2 respectively:

Ti = 1 = Rið Þ= 1 = R1 + 1= R2ð Þ; where i = 1;2 ð11Þ

The final predicted value of the target pixel located in the gap is
calculated as:

L x; y; t2; bð Þ = T1 × L1 x; y; t2; bð Þ + T2 × L2 x; y; t2; bð Þ ð12Þ

For the special situation where there is no similar pixel selected,
the local linear histogrammatching approach (USGS, 2004) is applied
to predict the value of the target pixel. A gain and bias is calculated
using the mean and standard deviation of the common pixels:

gain =
σP

σF

bias = μP − μF × gain
ð13Þ

where μP and μF are the mean value of common pixels in the target
and input image respectively, σP and σF are the standard deviations of
common pixels in the target and input image respectively. Then, the
value of the target pixel can be computed as:

L x; y; t2; bð Þ = gain × L x; y; t1; bð Þ + bias ð14Þ

2.1.4. Data quality flag generation
A data quality flag layer as a supplement to the final filled products

is helpful for users to evaluate data reliability. Accordingly, we
generated such a layer, in which integer 0 to 3 indicates which gap-
filling approach is used for each pixel (Table 1).

2.2. Using multiple SLC-off ETM+ images

Although Landsat 5 continues to amaze the scientific community
with its longevity, instrument failure is inevitable in the near future
(Bédard et al., 2008). A single Landsat 5 TM image as the input image



Fig. 4. Schematic diagram of the similar pixels selection when using multiple input
images.
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to fill SLC-off gaps may not be a long-term viable option. It is possible
to fill gaps using multiple SLC-off ETM+ images because the gaps in
these images do not overlap completely among scenes. The criteria for
selecting the input images are (1) that their acquisition dates are close
to that of the target image and (2) that they are mostly free of cloud
contamination or snow cover. The number of necessary input images
can be determined by the degree of gap overlapping. If gaps in input
and target images do not overlap, then fewer input images are
needed.

Whenmultiple SLC-off ETM+ images are used as input images, the
process of gap filling can be performed as shown in Fig. 3. First, all
input images are sorted by acquisition date. The input image acquired
closest in time to the target image is given first priority, and is the first
one used in the process. Images acquired further from the target
image acquisition date are used correspondingly later in the process.
Next, as Fig. 3 shows, if the corresponding pixel of the target pixel in
the first priority input image is scanned, the first input image is used
to predict the value of the target pixel according to the method
described in Section 2.1. Otherwise, the second priority input image is
used. This process is repeated until all un-scanned target pixels in the
target image are filled.

Since the input and target images both have un-scanned gaps, the
maximum window size needs to be modified when using multiple
SLC-off images as input images. As Fig. 4 shows, the number of
common pixels within the window is less than that of using an input
image without gaps. Accordingly, the threshold of the maximum
window size is increased from 17 to 31. After finishing the gap-filling
according to the procedure shown in Fig. 3, the data quality flag layer
is also produced to identify which input image is used and which gap-
filling approach is used for each target pixel (Table 2).

3. Data and experiment design

3.1. Study area and data

The study region is located in eastern Maryland around 39.10°N
and 76.14°W, and is covered by World Reference System 2 Path 15
and Row 33. Within this Path/Row, we selected an intensive study
area, which covers 15 km×15 km (500×500 Landsat pixels). The
major land cover types in this area include forest, water and arable
land. The arable land in these scenes includes both “green” and “non-
green” crops (the cover of the latter consists largely of bare ground,
and is depicted as grey in the images in Fig. 5). Water covers almost
one third of this study area and is relatively spectrally homogenous,
while the other areas are (i.e., forest and arable land) are spectrally
heterogeneous.

Five Landsat 5 TM images and three Landsat 7 ETM+ SLC-off
images (Level 1 product) covering the study area were selected to
The ith input
image

Correspon
input pi
scanned

N

i+1 

Fig. 3. The flowchart of the NSPI
validate this gap-filling method. All images were clear of cloud
contamination and snow cover. All of these images were calibrated to
TOA reflectance with a range from 0 to 1.0. For this portion of the
study, we only filled the gaps of the green, red, and near infrared (NIR)
bands (bands 2, 3 and 4) to evaluate the performance of NSPI. For a
later portion of the study, whereby we evaluated classification results
of a gap-filled product, we used all six reflective 30 m Landsat bands
(i.e., bands 1 through 5 and 7).

3.2. Experiment design

3.2.1. Experiments by using simulated SLC-off images
The NSPI was tested with simulated SLC-off images, which helps to

understand its accuracy quantitatively. Fig. 5 shows four Landsat 5 TM
images used to test the proposed method for a single TM image as the
input image case (displayed as 4, 3 2 false color composites). They
were acquired on May 25, 2008, June 10, 2008, February 8, 2010 and
April 29, 2010. From Fig. 5, it can be seen that two TM images acquired
in 2008 (a and b) are very similar to each other, while the two TM
images acquired in 2010 (d and e) are less similar to each other,
mainly due to the difference between winter (d) and spring (e)
vegetation condition.

SLC-off images (Fig. 5c and f) were simulated for the images
acquired on June 10, 2008 and April 29, 2010. For these images,
simulated gaps were generated using an actual SLC-off image,
Target un-scanned
pixel (x, y) at t2

Predict the value of 
un-scanned pixel (x, y) 

according to the 
method of using a 
single input image

ding
xel
?

Yes

o

using multiple input images.

image of Fig.�3


Table 2
Data quality flag for using multiple input images.

Value Meaning

0 This pixel is without gaps
11 Predicted by similar pixels more than M using 1st input image
12 Predicted by similar pixels less than M using 1st input image
13 Predicted by common pixels using 1st input image
… …

m1 Predicted by similar pixels more than M using mth input image
m2 Predicted by similar pixels less than M using mth input image
m3 Predicted by common pixels using mth input image
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whereby zero values of the gap pixels from that image replaced the
values for those same locations on the test images. There were a total
of 250,000 un-scanned pixels per simulated SLC-off image. After
generating the simulated SLC-off images, the TM images fromMay 25,
2008 (Fig. 5a) and February 8, 2010 (Fig. 5d) were used as input
images to fill the June 10, 2008 and April 29, 2010 images,
respectively. Gap filling was done both using the NSPI, and the local
linear histogrammethod described by the USGS. We conducted pixel-
based comparisons between NSPI and the local linear histogram
method. However, due in part to the nature of the different
interpolation approaches, we felt that conducting similar pixel-
based comparisons between NSPI and the multi-scale segmentation
approach (Maxwell et al., 2007) or the geostatistics based methods
(Zhang, et al., 2007; Pringle et al., 2009) was statistically problematic
and beyond the scope of the study. Because images a and c were
acquired closer in time than that of the other two (d and f), we were
able to assess the effect of spectral similarity between input and target
image on the filled results. Finally the actual TM images acquired on
June 10, 2008 and April 29, 2010 were used to validate performance of
the NSPI and the local linear histogram method by comparing the
filled images with the actual TM images.

For the case of using multiple SLC-off images as input images, two
new SLC-off images were also simulated, in which a simulated SLC-off
Fig. 5.NIR–red–green composites of Landsat TM images for the simulation test for using a sin
February 8, 2010; (e) acquired April 29, 2010; (c) and (f) SLC-off image were simulated ba
TM data set was generated for the February 8, 2010 image by moving
the gaps in Fig. 5f downwards 6 pixels. This data set was used to
simulate the first priority SLC-off input image (Fig. 6a). Similarly, the
second priority simulated SLC-off data set was generated using the
January 23, 2010 data set (Fig. 6b) by moving the gaps in Fig. 5f
upwards 6 pixels. The parts outside of gaps of these two simulated
SLC-off images can cover all the gaps of Fig. 5f. Accordingly, Fig. 6a and
b were used as input images to fill the gaps of Fig. 5f.

3.2.2. Experiments by using actual SLC-off images
The NSPI was also applied to actual SLC-off ETM+ images to

evaluate its performance. The SLC-off ETM+ image acquired on
September 22, 2008 (Fig. 7c) was selected as the target image. For the
case of using a single input image to fill the gaps, the TM image from
June 10, 2008 (Fig. 5b) was used. For the case of using multiple input
images, two SLC-off ETM+ images acquired on February 11, 2008 and
June 1, 2008 (Fig. 7a and b) were used to fill the gaps in the target
image.

3.2.3. Classification experiments using gap-filled data from an entire
scene

The NSPI was run on an entire scene (path 15 Row 33), and using
all six 30-m reflective TM bands. For this portion of the study, we
generated a simulated SLC-off data set using the April 29, 2010 scene
(target scene), and using a May 7, 2007 scene as the input data. After
this, we generated a land cover classification for the simulated SLC-off
gap-filled data, and also for the actual (original non-gap) data. The
comparison is described in further detail below.

3.3. Validation

3.3.1. Assessments of image characteristics
Both qualitative and quantitative evaluations were performed. For

the qualitative assessment, the filled results were visually checked to
determine whether they were spatially continuous, and whether
gle input image. (a) Acquired onMay 25, 2008; (b) acquired June 10, 2008; (d) acquired
sed on (b) and (e) respectively.
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Fig. 6. Two simulated SLC-off images to test using multiple input images. (a) Simulated based on TM image from February 8, 2010 and (b) based on TM image from January 23, 2010.
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there were stripes or other anomalies in the filled images. For the
quantitative assessment, the filled images were compared with the
actual image data through the calculation of two statistical indices.
The first index used was the root mean square error (RMSE). This
metric is frequently used to assess the differences between values
predicted by a model and the values actually observed or measured. It
is defined as Eq. (15).

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

f =1
L xf ; yf ; t2; b
� �

−L0 xf ; yf ; t2; b
� �h i2

N

vuuut
ð15Þ

where N is the total number of un-scanned pixels, L (xf, yf, t2, b) and
L0(xf, yf, t2, b) are predicted and actual value of the fth un-scanned
pixel respectively. A larger RMSE indicates a larger prediction error.

The second metric used was average difference (AD). This is used
to evaluate either underestimation or overestimation of prediction,
and is defined as Eq. (16). A positive value of AD indicates an over-
prediction while a negative value represents an under-prediction.

AD =
∑
N

f =1
L xf ; yf ; t2; b
� �

−L0 xf ; yf ; t2; b
� �h i

N
ð16Þ

3.3.2. Assessments of gap-filled imagery for applications
In order to determine whether or not NSPI can yield results

relevant to the applications community, we generated a land cover
product using the gap-filled data generated from the simulated SLC-
Fig. 7. Actual SLC-off ETM+ images for test. (a) Acquired February 11,
off data set, and compared this land cover product with an analogous
one generated from the original image data source. For this test, we
used the entire easternMaryland scene, which is dominated by forest,
urban areas, water, and arable lands. For both simulated gap-filled and
original imagery, we converted data to TOA reflectance using
coefficients from Chander et al. (2009). Land cover data were
generated using the maximum likelihood supervised classifier.
Training statistics were derived using 49 polygons; high resolution
imagery from Google Earth was used to help define and categorize the
polygons. Polygonswere distributed throughout the entire image, and
were selected to be representative of the different land cover types
occurring within the region. Polygons were generally at least several
hundred pixels in size, except for those polygons used to characterize
urban areas, which were generally smaller. The classification scheme
was relatively simple, and was comprised of the following land cover
categories: water, urban, agricultural fields/grass, forest, and wet-
lands. The training polygons were from areas not covered by the
simulated SLC-off gaps. The same polygons and accompanying
statistics were used to classify both the gap-filled and the original
Landsat data sets.

To help assess the accuracy of the classification results, 300 points
were randomly selected from throughout the Landsat scene. Using
Google Earth, a land cover class determination was made for each
point. The points used did not overlap with training polygon areas.
Points that were difficult to characterize (e.g., located on interfaces
between two or more land cover categories, or land cover type was
not easily determinable) were excluded from the analysis. Thus, we
only used those points where we had high confidence that our call
was correct. These reference data points were then comparedwith the
2008; (b) acquired June 8, 2008; (c) acquired September 22, 2008.
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classification results to assess comparative accuracies between actual
and gap-filled data sets. Of the 300 random points selected, 243 points
were retained for accuracy assessment. Of these, 47 points were located
within the gap fill areas. To augment the number of points associated
with these fill areas, an additional 159 points were randomly selected
from within the gap areas, bringing the total number of accuracy
assessment points associated with the gap fill areas to 206. It should be
noted that the goal of this portion of the investigation was not
necessarily to generate the best classification possible (which can
generally be done using more sophisticated approaches employing
multiple dates of imagery, ancillary sources of data, and different
algorithms). Rather, the goal was to generate comparative results
between the actual and the NSPI data sets, thereby helping determine
the change in usability of the NSPI data sets versus “actual” data.

4. Results

4.1. Optimization of parameter M

Using NSPI, the only parameter that needs to be set is M, which is
defined as the minimum number of similar pixels. In an experiment,
selection of M was optimized through comparative experimental
Fig. 9. Results of gap-fill for the simulation test of using a single input image. Panels (a)
respectively, and (c) is the actual image; panels (d) and (e) are the filled images of Fig. 5f
results in which this parameter was varied. Fig. 8 shows the NIR band
RMSE of filled results of Fig. 5f by single input image using differentM
values. It is apparent that too small or too large a sample size
decreases the accuracy of the filled result. The highest accuracy was
obtained when the M was set as 20. In addition, filling accuracy
reflected by RMSE is reasonably insensitive to the minimum sample
size M when M value changes from 5 to 25. All the other bands and
other filled results showed similar patterns, with optimizedM ranging
from 10 to 30. Therefore, considering that largerM not only decreases
the computing efficiency but also improves filling accuracy insignif-
icantly, we recommend 20 as an appropriate value ofM in the tradeoff
between computing efficiency and filling accuracy. From the flag layer
of all the filled results, more than 98% un-scanned pixels in our
intensive study area could be predicted by using similar pixels more
than 20, indicating that 20 is an appropriate parameter using this
method. There were only 180 pixels (0.07% of the intensive study
area) for which there were no similar pixels. Thus, under normal
situations, most target pixels are expected to have at least some
similar pixels.

4.2. Filled results of simulated SLC-off images

Fig. 9a and b show the filled images of Fig. 5c using Fig. 5a as the
input image by using the local histogram matching method and NSPI
respectively. It is apparent that both filled image data sets are very
similar to the actual image (Fig. 9c). Meanwhile, Fig. 9d and e are the
filled images of Fig. 5f using Fig. 5d as the input image by the
histogram matching method and NSPI respectively. In this case, the
image filled by the new method appears much closer to the actual
image Fig. 9f than the one filled by using the histogram matching
method. There are visible stripes left in Fig. 9d, mainly located on the
land surfaces rather than the water surface, indicating larger errors of
the prediction by the histogram matching method in heterogeneous
areas. Scatter plots in Fig. 10 show the relationships between the
predicted values by these two methods and the actual values for NIR
and (b) are the filled images of Fig. 5c by local linear histogram matching and NSPI
by local linear histogram matching and NSPI respectively, and (f) is the actual image.

image of Fig.�8


Fig. 10. Scatter plots of the real and the predicted (retrieved) value of all un-scanned pixels. Panels (a)–(d) are the scatter plots of Fig. 9a, b, d, e respectively. Axes denote top-of-
atmosphere reflectance.
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band. The data points in the scatter plot of the new method fall closer
to the 1:1 line than those of the histogram equalization method,
especially for the filled result of Fig. 5f, indicating that NSPI can more
accurately predict the value of un-scanned pixels on the pixel level
even when the acquisition date of input image is relatively far away
from that of the target image.

In order to quantitatively compare the prediction of un-scanned
pixels for the above two images, RMSE and AD of all the predictions are
compared (Table 3). Generally, NSPI has higher prediction accuracy
compared with results from the local linear histogram matching
method. This is especially apparent when the time interval between
acquisition dates of input and target images is larger. For example,
compared to the histogram matching method, NSPI slightly reduces
RMSE (from 0.0195 to 0.0153) for the NIR band when using the
temporally closer input image. The RMSE is greatly reduced (from
0.0960 to 0.0398) using NSPI when the more temporally distant input
image is used.

The same experiment was performed in Fig. 5f using multiple
input images (Fig. 6a and b), and results are displayed in Fig. 11. It is
evident that the restored image by NSPI seems much closer to the
actual image (Fig. 11c) than that by the histogram matching method.
Table 3
The accuracy of filled results of Fig. 5c and f using a single input image.

Band Method Filled result of
Fig. 5c

Filled result of
Fig. 5f

RMSE AD RMSE AD

Green Histogram matching 0.0070 0.0000 0.3696 −0.1600
NSPI 0.0052 0.0000 0.0121 −0.0007

Red Histogram matching 0.0107 0.0000 0.4006 −0.1817
NSPI 0.0079 0.0000 0.0173 −0.0008

NIR Histogram matching 0.0195 −0.0002 0.0960 −0.0036
NSPI 0.0153 0.0001 0.0398 0.0005
From the scatter plots for NIR band (Fig. 12), it is apparent that the
histogram matching method estimated the values of the un-scanned
pixels with larger errors. This is further supported by the quantitative
accuracy assessment shown in Table 4. The RMSE values for green, red
and NIR bands ware notably lower using our method.

4.3. Filled results of actual SLC-off images

Fig. 13a and b shows the filled SLC-off ETM+ image from
September 22, 2008 using the local linear histogram matching and
NSPI respectively, both using the June 10, 2008 TM image as a single
input. Both filled images appear spatially continuous without stripes,
and both filled images appear similar to each other. This suggests both
methods have comparable abilities for gap filling if the states of land
surface of the input image are comparable to the target image.

The filled images by the histogram matching and NSPI using
multiple input images are shown in Fig. 13c and d respectively. The
quality of the filled image by NSPI appears to be better than that of the
histogram matching in this case. The reason for the lower quality for
the histogram matching result is likely because one of the input
images (Fig. 6a) was acquired a relatively long time from the target
image.

4.4. Land cover classification accuracy assessment

Classification of the entire simulated SLC-off gap filled data set
using NSPI yielded results very similar to the classification generated
for the actual data (non-gapped) data set. Aerial estimates for each
land cover class were comparable between the gap-filled and
reference data sets (Table 5). For example, deciduous forest covered
9818.3 km2 in the gap-fill classification (31.9% of the scene), as
compared with 9882.5 for the reference classification (32.1% of the
scene). Urban areas, which are often difficult to classify in imagery due
to the high degree of spectral heterogeneity that typifies this class,
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Fig. 11. Results of gap-fill for the simulation test of using multiple input images. Panels (a) and (b) are the filled images of Fig. 5f by local linear histogram matching and NSPI
respectively, and (c) is the actual image.

Fig. 12. Scatter plots of the real and the predicted value of all un-scanned pixels. Panels (a)–(b) are the scatter plots of Fig. 11a and b respectively. Axes denote top-of-atmosphere
reflectance.
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covered 4149.4km2 in the gap-fill classification (13.5% of the scene),
as compared with 4236.2 km for the reference classification (13.8% of
the scene). Comparison between the gap-filled classification results
versus the classification results from the actual data using standard
accuracy assessments (Congalton, 1991) indicated that the two
classification products are very comparable (Table 6). Overall
accuracy values of 90.5% and 91.8% for the gap-filled and actual data
classifications, respectively. For just those pixels within the gap areas,
accuracy was 90.8% from the NSPI-generated land cover classification
as compared to 92.7% from the classification generated using the
actual data (Table 7). This supports the assertion that gap-filled
results derived from NSPI can be used in support of normal
applications such as land cover mapping.
Table 4
The accuracy of filled results of Fig. 5f using multiple input images.

Band Gap-fill method Filled result of Fig. 5f

RMSE AD

Green Histogram matching 0.3128 −0.1152
NSPI 0.0107 −0.0004

Red Histogram matching 0.3338 −0.1272
NSPI 0.0166 −0.0005

NIR Histogram matching 0.0771 −0.0014
NSPI 0.0357 −0.0002
5. Conclusion and discussion

Despite theSLC failure, thequality of the radiometryandgeometryof
the Landsat 7 ETM+ data is still excellent for many applications (Roy
et al., 2010; Chander et al., 2010). Therefore, it is very appropriate and
necessary to develop techniques to fill in the un-scanned gaps in the
SLC-off imagery. Unfortunately, existing gap filling methods have
limitations. This paper proposes a new and effective method to fill the
un-scanned gaps in Landsat 7 SLC-off ETM+ images. The NSPI can
restore the value of un-scanned pixels very accurately, especially for
heterogeneous landscapes and when there is a longer time interval
between the input image and target image.

The major improvement of NSPI is that it makes better use of
appropriate and relevant information of the scanned pixels located in
close proximity to the gaps. First, according to Eq. (8), the similar
pixels in the neighborhood of the gap are used to provide the
difference information between the input image and the target image,
allowing radiometric differences between two images to be taken into
account for each land cover type. This is in part why NSPI is more
effective when the time interval between the input and target images
is longer. Second, NSPI selects a similar number of pixels over a certain
sample size (M), which helps create greater statistical reliability,
especially in heterogeneous areas. Third, a local rule based on spectral
similarity is employed to search similar pixels, which helps to ensure
that the scanned pixels belonging to the same land cover features
from both input and target are being used. In comparison, the multi-
scale segment method (Maxwell et al., 2007) uses only one scanned
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Fig. 13. Results of gap-fill for the actual SLC-off image. Panels (a) and (b) are the filled images of Fig. 7c using Fig. 5b by local linear histogrammatching and NSPI, respectively; Panels
(c) and (d) are the filled images of Fig. 7c using Fig. 7a and b by local linear histogram matching and NSPI, respectively.
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pixel located outside the gaps in the target image. The pixel selected to
replace the target pixel is the one that is the closest spatially to the un-
scanned target pixel. Use of only one pixel does not statistically ensure
the replacement with an appropriate pixel value. Similar to NSPI, the
local linear histogram matching method selects the common pixels
within a neighborhood, but it does not take spectral similarity of these
common pixels into account. In addition, the histogram matching
method just utilizes these common pixels as training data to build a
re-scalingmodel, and then this model is employed to restore the value
of the target pixels by only using the value in the input image asmodel
input. If the values of common pixels are within a small range (as
often happens), a linear regressionmodel is difficult to buildwith high
statistical significance. Accordingly the uncertainties included in the
regression model can be correspondingly large.
Table 5
Aerial coverage of five land cover classes derived from classification of NSPI gap-fill data
versus reference data for the entire Landsat scene. First value represents number of
square km; the second represents the percentage of total area.

Land cover class NSPI gap-fill classification Reference classification

Water 4987.4 (16.2%) 4986.4 (16.2%)
Agricultural fields/grass 11353.6 (36.9%) 11200.0 (36.4%)
Forest 9818.3 (31.9%) 9882.5 (32.1%)
Urban 4149.4 (13.5%) 4236.2 (13.8%)
Wetlands (salt marsh) 459.8 (1.5%) 463.4 (1.5%)
Total 30768.5 (100%) 30768.5 (100%)
Another strength of NSPI is that it can help ensure the spatial
continuity of the filled results. For the similar pixels located near the
gaps, their spectral values are likely to be very close to the target un-
scanned pixel. Therefore, the value of the target pixel is also estimated
by the weighted sum of similar pixels in the target image according to
Eq. (7). Then, this prediction is combined with the prediction by
Eq. (8), which can help create consistency between the predicted un-
scanned pixels and the scanned pixels outside the gaps.

One additional strength of NSPI is that its principle is conceptually
simple. Although NSPI needs more computing time than a number of
other approaches, it is not particularly computationally intensive.
While initial versions of NSPI required too much computer memory to
run on an entire Landsat scene, this was solved by dividing the image
into 1000×1000 pixel blocks, and then mosaicking the blocks
together. However, to ensure that optimal pixel values are used for
gap filling, the computation window size needs to be gradually
increased to locate the “best” neighborhood pixels, and there are
multiple calculations that need to be done to fill each target pixel. This
can require more computing time than other methods. Nonetheless,
NSPI can be applied to process large amounts SLC-off ETM+ images in
production sequence, if necessary.

We also recognize that there are also several potential limitations
regarding this NSPI. The approach does require the availability of one or
more reasonably clear ancillary TM or ETM+ image(s). Frequent cloud
coverwill likely hinder the use of NSPI, and thuswe suspect problems in
using it in some areas, such as in humid tropical forest ecosystems. In
addition, we are unclear how much changing land cover type between
input and target acquisition dates will impact final results.
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Table 6
Standard accuracy assessment of land cover classifications from (1) NSPI gap filled data using simulated SLC-off data (first number) and (2) actual imagery (number in bold).
Number of assessment points was 243. Overall classification accuracies were 90.5% and 91.8% for gap-filled versus reference data sets, respectively.

Class Reference totals Classified totals Number correct Producer's accuracy User's accuracy

Water 52 52 50 50 49 49 94.2% 94.2% 98.0% 98.0%
Agriculture and Grass 62 62 76 69 59 58 95.2% 93.6% 77.6% 84.1%
Forest 82 82 78 84 76 80 92.7% 97.6% 97.4% 95.2%
Urban 44 44 36 37 34 35 77.3% 79.6% 94.4% 94.6%
Wetlands 3 3 3 3 2 1 66.7% 33.3% 66.7% 33.2%

Table 7
Standard accuracy assessment of land cover classifications from just the gap areas. The first number relates to accuracies of land cover data generated from NSPI gap filled simulated
SLC-off data, whereas the second (in bold) refers to accuracies developed using the actual imagery. Number of assessment points was 206. Overall classification accuracies within the
gap areas were 90.8% and 92.7% for gap-filled versus reference data sets, respectively.

Class Reference totals Classified totals Number correct Producer's accuracy User's accuracy

Water 47 47 45 43 45 43 95.7% 91.5% 100.0% 100.0%
Agriculture and grass 67 67 85 75 67 66 100.0% 98.5% 78.8% 88.0%
Forest 74 74 61 70 61 68 82.4% 91.9% 100.0% 97.1%
Urban 15 15 12 14 12 12 73.3% 80.0% 91.7% 85.7%
Wetlands 3 3 3 4 3 2 100.0% 66.7% 100.0% 50.0%
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Another issue worth mentioning is that the NSPI approach uses
spectral similar pixels for the prediction and determines weights
based on spectral similarity and spatial distance. It is a type of
deterministic linear interpolation approach that cannot produce
statistical uncertainty for each prediction. Conversely, a geostatistical
interpolation approach based on spatial autocorrelation can produce
variance for each prediction and this may be appropriate for the gap-
filling process. We will explore the geostatistical approach to
determine if it can be incorporated in the NSPI processing in future.

At present, selection of the best input image is done on a case by
case basis, but should NSPI becomemore widely used, we believe that
there will be number of ways in which the image selection process
could be automated. For the test scenes used in this investigation, we
did not see any obvious flaws in the scenes that were gap-filled scenes
using the NSPI. However, we recognize that more tests will be
necessary to assess the robustness of NSPI for gap filling across a wide
array of land cover types and conditions.
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